
Package: RNAmf (via r-universe)
September 17, 2024

Type Package

Title Recursive non-additive emulator for multi-fidelity data

Version 0.1.0

Author Junoh Heo <heojunoh@msu.edu>, Chih-Li Sung <sungchih@msu.edu>

Maintainer Junoh Heo <heojunoh@msu.edu>

Description Performs RNA emulation and active learning proposed by Heo
and Sung (2023+) <arXiv:2309.11772> for multi-fidelity computer
experiments. The RNA emulator is particularly useful when the
simulations with different fidelity level are nonlinearly
correlated. The hyperparameters in the model are estimated by
maximum likelihood estimation.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports plgp, stats, lhs, doParallel, foreach

Suggests knitr, rmarkdown

RoxygenNote 7.2.3

VignetteBuilder knitr

Repository https://heojunoh.r-universe.dev

RemoteUrl https://github.com/heojunoh/rnamf

RemoteRef HEAD

RemoteSha 74f74fbd78171c5204eefed1f70d50ecc0d85b62

Contents
ALC_RNAmf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
ALMC_RNAmf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
ALM_RNAmf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
NestedX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
predict.RNAmf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
RNAmf_three_level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
RNAmf_two_level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1

https://arxiv.org/abs/2309.11772


2 ALC_RNAmf
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ALC_RNAmf find the next point by ALC criterion

Description

The function acquires the new point by the Active learning Cohn (ALC) criterion. It calculates the

ALC criterion ∆σ2
L(l,x)∑l
j=1 Cj

=
∫
Ω
σ∗2
L (ξ)−σ̃∗2

L (ξ;l,x)dξ∑l
j=1 Cj

, where fL is the highest-fidelity simulation code,

σ∗2
L (ξ) is the posterior variance of fL(ξ), Cj is the simulation cost at fidelity level j, and σ̃∗2

L (ξ; l,x)
is the posterior variance based on the augmented design combining the current design and a new
input location x at each fidelity level lower than or equal to l. The integration is approximated by
MC integration using uniform reference samples.

Usage

ALC_RNAmf(Xref = NULL, Xcand = NULL, fit, mc.sample = 100,
cost = NULL, optim = TRUE, parallel = FALSE, ncore = 1)

Arguments

Xref vector or matrix of reference location to approximate the integral of ALC. If
Xref=NULL, 100× d points are generated by Latin hypercube design. Default is
NULL.

Xcand vector or matrix of candidate set which could be added into the current design
only when optim=FALSE. Xcand is the set of the points where ALC criterion is
evaluated. If Xcand=NULL, Xref is used. Default is NULL. See details.

fit object of class RNAmf.

mc.sample a number of mc samples generated for the imputation through MC approxima-
tion. Default is 100.

cost vector of the costs for each level of fidelity. If cost=NULL, total costs at all
levels would be 1. cost is encouraged to have a ascending order of positive
value. Default is NULL.

optim logical indicating whether to optimize AL criterion by optim’s gradient-based
L-BFGS-B method. If optim=TRUE, 5× d starting points are generated by Latin
hypercube design for optimization. If optim=FALSE, AL criterion is optimized
on the Xcand. Default is TRUE.

parallel logical indicating whether to compute the AL criterion in parallel or not. If
parallel=TRUE, parallel computation is utilized. Default is FALSE.

ncore a number of core for parallel. It is only used if parallel=TRUE. Default is 1.
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Details

Xref plays a role of ξ to approximate the integration. To impute the posterior variance based on the
augmented design σ̃∗2

L (ξ; l,x), MC approximation is used. Due to the nested assumption, imputing
y
[s]
ns+1 for each 1 ≤ s ≤ l by drawing samples from the posterior distribution of fs(x

[s]
ns+1) based

on the current design allows to compute σ̃∗2
L (ξ; l,x). Inverse of covariance matrix is computed by

the Sherman-Morrison formula. For details, see Heo and Sung (2023+, <arXiv:2309.11772>).

To search for the next acquisition x∗ by maximizing AL criterion, the gradient-based optimization
can be used by optim=TRUE. Firstly, σ̃∗2

L (ξ; l,x) is computed on the 5 × d number of points. Af-
ter that, the point minimizing σ̃∗2

L (ξ; l,x) serves as a starting point of optimization by L-BFGS-B
method. Otherwise, when optim=FALSE, AL criterion is optimized only on Xcand.

The point is selected by maximizing the ALC criterion: argmaxl∈{1,...,L};x∈Ω
∆σ2

L(l,x)∑l
j=1 Cj

.

Value

• ALC: list of ALC criterion integrated on Xref when each data point on Xcand is added at each
level l if optim=FALSE. If optim=TRUE, ALC returns NULL.

• cost: a copy of cost.

• Xcand: a copy of Xcand.

• chosen: list of chosen level and point.

• time: a scalar of the time for the computation.

Examples

## Not run:
library(lhs)
library(doParallel)
library(foreach)

### simulation costs ###
cost <- c(1, 3)

### 1-d Perdikaris function in Perdikaris, et al. (2017) ###
# low-fidelity function
f1 <- function(x) {

sin(8 * pi * x)
}

# high-fidelity function
f2 <- function(x) {

(x - sqrt(2)) * (sin(8 * pi * x))^2
}

### training data ###
n1 <- 13
n2 <- 8

### fix seed to reproduce the result ###
set.seed(1)
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### generate initial nested design ###
X <- NestedX(c(n1, n2), 1)
X1 <- X[[1]]
X2 <- X[[2]]

### n1 and n2 might be changed from NestedX ###
### assign n1 and n2 again ###
n1 <- nrow(X1)
n2 <- nrow(X2)

y1 <- f1(X1)
y2 <- f2(X2)

### n=100 uniform test data ###
x <- seq(0, 1, length.out = 100)

### fit an RNAmf ###
fit.RNAmf <- RNAmf_two_level(X1, y1, X2, y2, kernel = "sqex")

### predict ###
predy <- predict(fit.RNAmf, x)$mu
predsig2 <- predict(fit.RNAmf, x)$sig2

### active learning with optim=TRUE ###
alc.RNAmf.optim <- ALC_RNAmf(

Xref = x, Xcand = x, fit.RNAmf, cost = cost,
optim = TRUE, parallel = TRUE, ncore = 10

)
alc.RNAmf.optim$time # computation time of optim=TRUE

### active learning with optim=FALSE ###
alc.RNAmf <- ALC_RNAmf(

Xref = x, Xcand = x, fit.RNAmf, cost = cost,
optim = FALSE, parallel = TRUE, ncore = 10

)
alc.RNAmf$time # computation time of optim=FALSE

### visualize ALC ###
par(mfrow = c(1, 2))
plot(x, alc.RNAmf$ALC$ALC1,

type = "l", lty = 2,
xlab = "x", ylab = "ALC criterion augmented at the low-fidelity level",
ylim = c(min(c(alc.RNAmf$ALC$ALC1, alc.RNAmf$ALC$ALC2)),

max(c(alc.RNAmf$ALC$ALC1, alc.RNAmf$ALC$ALC2)))
)
plot(x, alc.RNAmf$ALC$ALC2,

type = "l", lty = 2,
xlab = "x", ylab = "ALC criterion augmented at the high-fidelity level",
ylim = c(min(c(alc.RNAmf$ALC$1, alc.RNAmf$ALC$2)),

max(c(alc.RNAmf$ALC$1, alc.RNAmf$ALC$2)))
)
points(alc.RNAmf$chosen$Xnext,
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alc.RNAmf$ALC$2[which(x == drop(alc.RNAmf$chosen$Xnext))],
pch = 16, cex = 1, col = "red"

)
## End(Not run)

ALMC_RNAmf find the next point by ALMC criterion

Description

The function acquires the new point by the hybrid approach, referred to as Active learning MacKay-
Cohn (ALMC) criterion. It finds the optimal input location x∗ by maximizing σ∗2

L (x), the posterior
predictive variance at the highest-fidelity level L. After selecting x∗, it finds the optimal fidelity
level by maximizing ALC criterion at x∗, argmaxl∈{1,...,L}

∆σ2
L(l,x∗)∑l
j=1 Cj

, where Cj is the simulation

cost at level j. See ALC_RNAmf. For details, see Heo and Sung (2023+, <arXiv:2309.11772>).

Usage

ALMC_RNAmf(Xref = NULL, Xcand = NULL, fit, mc.sample = 100,
cost = NULL, optim = TRUE, parallel = FALSE, ncore = 1)

Arguments

Xref vector or matrix of reference location to approximate the integral of ALC. If
Xref=NULL, 100× d points are generated by Latin hypercube design. Default is
NULL.

Xcand vector or matrix of candidate set which could be added into the current design
only when optim=FALSE. Xcand is the set of the points where ALM criterion is
evaluated. If Xcand=NULL, Xref is used. Default is NULL.

fit object of class RNAmf.

mc.sample a number of mc samples generated for the imputation through MC approxima-
tion. Default is 100.

cost vector of the costs for each level of fidelity. If cost=NULL, total costs at all
levels would be 1. cost is encouraged to have a ascending order of positive
value. Default is NULL.

optim logical indicating whether to optimize AL criterion by optim’s gradient-based
L-BFGS-B method. If optim=TRUE, 5× d starting points are generated by Latin
hypercube design for optimization. If optim=FALSE, AL criterion is optimized
on the Xcand. Default is TRUE.

parallel logical indicating whether to compute the AL criterion in parallel or not. If
parallel=TRUE, parallel computation is utilized. Default is FALSE.

ncore a number of core for parallel. It is only used if parallel=TRUE. Default is 1.
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Value

• ALMC: vector of ALMC criterion ∆σ2
L(l,x∗)∑l
j=1 Cj

for 1 ≤ l ≤ L.

• ALM: vector of ALM criterion computed at each point of Xcand at the highest fidelity level if
optim=FALSE. If optim=TRUE, ALM returns NULL.

• ALC: list of ALC criterion integrated on Xref when each data point on Xcand is added at each
level l if optim=FALSE. If optim=TRUE, ALC returns NULL.

• cost: a copy of cost.

• Xcand: a copy of Xcand.

• chosen: list of chosen level and point.

• time: a scalar of the time for the computation.

Examples

## Not run:
library(lhs)
library(doParallel)
library(foreach)

### simulation costs ###
cost <- c(1, 3)

### 1-d Perdikaris function in Perdikaris, et al. (2017) ###
# low-fidelity function
f1 <- function(x) {

sin(8 * pi * x)
}

# high-fidelity function
f2 <- function(x) {

(x - sqrt(2)) * (sin(8 * pi * x))^2
}

### training data ###
n1 <- 13
n2 <- 8

### fix seed to reproduce the result ###
set.seed(1)

### generate initial nested design ###
X <- NestedX(c(n1, n2), 1)
X1 <- X[[1]]
X2 <- X[[2]]

### n1 and n2 might be changed from NestedX ###
### assign n1 and n2 again ###
n1 <- nrow(X1)
n2 <- nrow(X2)
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y1 <- f1(X1)
y2 <- f2(X2)

### n=100 uniform test data ###
x <- seq(0, 1, length.out = 100)

### fit an RNAmf ###
fit.RNAmf <- RNAmf_two_level(X1, y1, X2, y2, kernel = "sqex")

### predict ###
predy <- predict(fit.RNAmf, x)$mu
predsig2 <- predict(fit.RNAmf, x)$sig2

### active learning with optim=TRUE ###
almc.RNAmf.optim <- ALMC_RNAmf(

Xref = x, Xcand = x, fit.RNAmf, cost = cost,
optim = TRUE, parallel = TRUE, ncore = 10

)
almc.RNAmf.optim$time # computation time of optim=TRUE

### active learning with optim=FALSE ###
almc.RNAmf <- ALMC_RNAmf(

Xref = x, Xcand = x, fit.RNAmf, cost = cost,
optim = FALSE, parallel = TRUE, ncore = 10

)
almc.RNAmf$time # computation time of optim=FALSE

### visualize ALMC ###
par(mfrow = c(1, 2))
plot(x, almc.RNAmf$ALM,

type = "l", lty = 2,
xlab = "x", ylab = "ALM criterion at the high-fidelity level"

)
points(almc.RNAmf$chosen$Xnext,

almc.RNAmf$ALM[which(x == drop(almc.RNAmf$chosen$Xnext))],
pch = 16, cex = 1, col = "red"

)
plot(x, almc.RNAmf$ALC$ALC1,

type = "l", lty = 2,
ylim = c(min(c(alc.RNAmf$ALC$ALC1, alc.RNAmf$ALC$ALC2)),

max(c(alc.RNAmf$ALC$ALC1, alc.RNAmf$ALC$ALC2))),
xlab = "x", ylab = "ALC criterion augmented at each level on the optimal input location"

)
lines(x, almc.RNAmf$ALC$ALC2, type = "l", lty = 2)
points(almc.RNAmf$chosen$Xnext,

almc.RNAmf$ALC$ALC1[which(x == drop(almc.RNAmf$chosen$Xnext))],
pch = 16, cex = 1, col = "red"

)
points(almc.RNAmf$chosen$Xnext,

almc.RNAmf$ALC$ALC2[which(x == drop(almc.RNAmf$chosen$Xnext))],
pch = 16, cex = 1, col = "red"

)
## End(Not run)
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ALM_RNAmf find the next point by ALM criterion

Description

The function acquires the new point by the Active learning MacKay (ALM) criterion. It calcu-
lates the ALM criterion σ∗2

l (x)∑l
j=1 Cj

, where σ∗2
l (x) is the posterior predictive variance at each fi-

delity level l and Cj is the simulation cost at level j. For details, see Heo and Sung (2023+,
<arXiv:2309.11772>).

Usage

ALM_RNAmf(Xcand = NULL, fit, cost = NULL, optim = TRUE, parallel = FALSE, ncore = 1)

Arguments

Xcand vector or matrix of candidate set which could be added into the current design
only used when optim=FALSE. Xcand is the set of the points where ALM crite-
rion is evaluated. If Xcand=NULL, 100 × d number of points are generated by
Latin hypercube design. Default is NULL.

fit object of class RNAmf.

cost vector of the costs for each level of fidelity. If cost=NULL, total costs at all
levels would be 1. cost is encouraged to have a ascending order of positive
value. Default is NULL.

optim logical indicating whether to optimize AL criterion by optim’s gradient-based
L-BFGS-B method. If optim=TRUE, 5× d starting points are generated by Latin
hypercube design for optimization. If optim=FALSE, AL criterion is optimized
on the Xcand. Default is TRUE.

parallel logical indicating whether to compute the AL criterion in parallel or not. If
parallel=TRUE, parallel computation is utilized. Default is FALSE.

ncore a number of core for parallel. It is only used if parallel=TRUE. Default is 1.

Value

• ALM: list of ALM criterion computed at each point of Xcand at each level if optim=FALSE. If
optim=TRUE, ALM returns NULL.

• cost: a copy of cost.

• Xcand: a copy of Xcand.

• chosen: list of chosen level and point.

• time: a scalar of the time for the computation.
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Examples

## Not run:
library(lhs)
library(doParallel)
library(foreach)

### simulation costs ###
cost <- c(1, 3)

### 1-d Perdikaris function in Perdikaris, et al. (2017) ###
# low-fidelity function
f1 <- function(x) {

sin(8 * pi * x)
}

# high-fidelity function
f2 <- function(x) {

(x - sqrt(2)) * (sin(8 * pi * x))^2
}

### training data ###
n1 <- 13
n2 <- 8

### fix seed to reproduce the result ###
set.seed(1)

### generate initial nested design ###
X <- NestedX(c(n1, n2), 1)
X1 <- X[[1]]
X2 <- X[[2]]

### n1 and n2 might be changed from NestedX ###
### assign n1 and n2 again ###
n1 <- nrow(X1)
n2 <- nrow(X2)

y1 <- f1(X1)
y2 <- f2(X2)

### n=100 uniform test data ###
x <- seq(0, 1, length.out = 100)

### fit an RNAmf ###
fit.RNAmf <- RNAmf_two_level(X1, y1, X2, y2, kernel = "sqex")

### predict ###
predy <- predict(fit.RNAmf, x)$mu
predsig2 <- predict(fit.RNAmf, x)$sig2

### active learning with optim=TRUE ###
alm.RNAmf.optim <- ALM_RNAmf(
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Xcand = x, fit.RNAmf, cost = cost,
optim = TRUE, parallel = TRUE, ncore = 10

)
alm.RNAmf.optim$time # computation time of optim=TRUE

### active learning with optim=FALSE ###
alm.RNAmf <- ALM_RNAmf(

Xcand = x, fit.RNAmf, cost = cost,
optim = FALSE, parallel = TRUE, ncore = 10

)
alm.RNAmf$time # computation time of optim=FALSE

### visualize ALM ###
par(mfrow = c(1, 2))
plot(x, alm.RNAmf$ALM$ALM1,

type = "l", lty = 2,
xlab = "x", ylab = "ALM criterion at the low-fidelity level",
ylim = c(min(c(alm.RNAmf$ALM$ALM1, alm.RNAmf$ALM$ALM2)),

max(c(alm.RNAmf$ALM$ALM1, alm.RNAmf$ALM$ALM2)))
)
points(alm.RNAmf$chosen$Xnext,

alm.RNAmf$ALM$ALM1[which(x == drop(alm.RNAmf$chosen$Xnext))],
pch = 16, cex = 1, col = "red"

)
plot(x, alm.RNAmf$ALM$ALM2,

type = "l", lty = 2,
xlab = "x", ylab = "ALM criterion at the high-fidelity level",
ylim = c(min(c(alm.RNAmf$ALM$ALM1, alm.RNAmf$ALM$ALM2)),

max(c(alm.RNAmf$ALM$ALM1, alm.RNAmf$ALM$ALM2)))
)
## End(Not run)

NestedX Constructing the nested design sets for RNA model.

Description

The function constructs the nested design sets with two fidelity levels X2 ⊆ X1 for RNAmf_two_level
or three fidelity levels X3 ⊆ X2 ⊆ X1 for RNAmf_three_level.

Usage

NestedX(n, d)

Arguments

n vector of the number of design points at each fidelity level l. Thus, the vector
must have a positive value n1, n2 or n1, n2, n3 where n1 > n2 > n3.

d constant of the dimension of the design.
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Details

The procedure replace the points of lower level design Xl−1 to the closest points of higher level de-
sign Xl. The length of the Xl−1 could be larger than the user specified. For details, see "NestedDesign".

Value

A list containing the design at each level, i.e., X1,X2 or X1,X2,X3.

References

L. Le Gratiet and J. Garnier (2014). Recursive co-kriging model for design of computer experiments
with multiple levels of fidelity. International Journal for Uncertainty Quantification, 4(5), 365-386;
doi:10.1615/Int.J.UncertaintyQuantification.2014006914

Examples

### number of design points ###
n1 <- 30
n2 <- 15

### dimension of the design ###
d <- 2

### fix seed to reproduce the result ###
set.seed(1)

### generate the nested design ###
NX <- NestedX(c(n1, n2), d)

### visualize nested design ###
plot(NX[[1]], col="red", pch=1, xlab="x1", ylab="x2")
points(NX[[2]], col="blue", pch=4)

predict.RNAmf predict

Description

The function computes the posterior mean and variance of RNA models with two or three fidelity
levels by fitted model using RNAmf_two_level or RNAmf_three_level.

Usage

## S3 method for class 'RNAmf'
predict(object, x, ...)

http://cran.nexr.com/web/packages/MuFiCokriging/MuFiCokriging.pdf
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Arguments

object a class RNAmf object fitted by RNAmf_two_level or RNAmf_three_level.

x vector or matrix of new input locations to predict.

... for compatibility with generic method predict.

Details

prediction of the RNAmf emulator with 2 or 3 fidelity levels.

From the model fitted by RNAmf_two_level or RNAmf_three_level, the posterior mean and vari-
ance are calculated based on the closed form expression derived by a recursive fashion. The formu-
las depend on its kernel choices. For details, see Heo and Sung (2023+, <arXiv:2309.11772>).

Value

• mu: vector of predictive posterior mean.

• sig2: vector of predictive posterior variance.

• time: a scalar of the time for the computation.

See Also

RNAmf_two_level or RNAmf_three_level for the model.

Examples

### two levels example ###
library(lhs)

### Perdikaris function ###
f1 <- function(x) {

sin(8 * pi * x)
}

f2 <- function(x) {
(x - sqrt(2)) * (sin(8 * pi * x))^2

}

### training data ###
n1 <- 13
n2 <- 8

### fix seed to reproduce the result ###
set.seed(1)

### generate initial nested design ###
X <- NestedX(c(n1, n2), 1)
X1 <- X[[1]]
X2 <- X[[2]]

### n1 and n2 might be changed from NestedX ###
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### assign n1 and n2 again ###
n1 <- nrow(X1)
n2 <- nrow(X2)

y1 <- f1(X1)
y2 <- f2(X2)

### n=100 uniform test data ###
x <- seq(0, 1, length.out = 100)

### fit an RNAmf ###
fit.RNAmf <- RNAmf_two_level(X1, y1, X2, y2, kernel = "sqex")

### predict ###
predy <- predict(fit.RNAmf, x)$mu
predsig2 <- predict(fit.RNAmf, x)$sig2

### RMSE ###
print(sqrt(mean((predy - f2(x))^2)))

### visualize the emulation performance ###
plot(x, predy,

type = "l", lwd = 2, col = 3, # emulator and confidence interval
ylim = c(-2, 1)

)
lines(x, predy + 1.96 * sqrt(predsig2 * length(y2) / (length(y2) - 2)), col = 3, lty = 2)
lines(x, predy - 1.96 * sqrt(predsig2 * length(y2) / (length(y2) - 2)), col = 3, lty = 2)

curve(f2(x), add = TRUE, col = 1, lwd = 2, lty = 2) # high fidelity function

points(X1, y1, pch = 1, col = "red") # low-fidelity design
points(X2, y2, pch = 4, col = "blue") # high-fidelity design

### three levels example ###
### Branin function ###
branin <- function(xx, l){

x1 <- xx[1]
x2 <- xx[2]
if(l == 1){
10*sqrt((-1.275*(1.2*x1+0.4)^2/pi^2+5*(1.2*x1+0.4)/pi+(1.2*x2+0.4)-6)^2 +

(10-5/(4*pi))*cos((1.2*x1+0.4))+ 10) + 2*(1.2*x1+1.9) - 3*(3*(1.2*x2+2.4)-1) - 1 - 3*x2 + 1
}else if(l == 2){

10*sqrt((-1.275*(x1+2)^2/pi^2+5*(x1+2)/pi+(x2+2)-6)^2 +
(10-5/(4*pi))*cos((x1+2))+ 10) + 2*(x1-0.5) - 3*(3*x2-1) - 1

}else if(l == 3){
(-1.275*x1^2/pi^2+5*x1/pi+x2-6)^2 + (10-5/(4*pi))*cos(x1)+ 10

}
}

output.branin <- function(x, l){
factor_range <- list("x1" = c(-5, 10), "x2" = c(0, 15))

for(i in 1:length(factor_range)) x[i] <- factor_range[[i]][1] + x[i] * diff(factor_range[[i]])
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branin(x[1:2], l)
}

### training data ###
n1 <- 20; n2 <- 15; n3 <- 10

### fix seed to reproduce the result ###
set.seed(1)

### generate initial nested design ###
X <- NestedX(c(n1, n2, n3), 2)
X1 <- X[[1]]
X2 <- X[[2]]
X3 <- X[[3]]

### n1, n2 and n3 might be changed from NestedX ###
### assign n1, n2 and n3 again ###
n1 <- nrow(X1)
n2 <- nrow(X2)
n3 <- nrow(X3)

y1 <- apply(X1,1,output.branin, l=1)
y2 <- apply(X2,1,output.branin, l=2)
y3 <- apply(X3,1,output.branin, l=3)

### n=10000 grid test data ###
x <- as.matrix(expand.grid(seq(0, 1, length.out = 100),seq(0, 1, length.out = 100)))

### fit an RNAmf ###
fit.RNAmf <- RNAmf_three_level(X1, y1, X2, y2, X3, y3, kernel = "sqex")

### predict ###
pred.RNAmf <- predict(fit.RNAmf, x)
predy <- pred.RNAmf$mu
predsig2 <- pred.RNAmf$sig2

### RMSE ###
print(sqrt(mean((predy - apply(x,1,output.branin, l=3))^2)))

### visualize the emulation performance ###
x1 <- x2 <- seq(0, 1, length.out = 100)
par(mfrow=c(1,2))
image(x1, x2, matrix(apply(x,1,output.branin, l=3), ncol=100),
zlim=c(0,310), main="Branin function")
image(x1, x2, matrix(predy, ncol=100),
zlim=c(0,310), main="RNAmf prediction")

### predictive variance ###
print(predsig2)
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RNAmf_three_level Fitting the model with three fidelity levels

Description

The function fits RNA models with designs of three fidelity levels. The estimation method is based
on MLE. Possible kernel choices are squared exponential, Matern kernel with smoothness param-
eter 1.5 and 2.5. The function returns fitted model by RNAmf_two_level, fitted model at level 3,
whether constant mean or not, and kernel choice.

Usage

RNAmf_three_level(X1, y1, X2, y2, X3, y3, kernel = "sqex", constant = TRUE, ...)

Arguments

X1 vector or matrix of input locations for the low fidelity level.

y1 vector of response values for the low fidelity level.

X2 vector or matrix of input locations for the medium fidelity level.

y2 vector of response values for the medium fidelity level.

X3 vector or matrix of input locations for the high fidelity level.

y3 vector of response values for the high fidelity level.

kernel character specifying kernel type to be used, to be chosen between "sqex"(squared
exponential), "matern1.5", or "matern2.5". Default is "sqex".

constant logical indicating for constant mean of GP (constant=TRUE) or zero mean (constant=FALSE).
Default is TRUE.

... for compatibility with optim.

Details

Consider the model

{
f1(x) = W1(x),

fl(x) = Wl(x, fl−1(x)) for l = 2, 3,
where fl is the simulation code

at fidelity level l, and Wl(x) ∼ GP (αl, τ
2
l Kl(x,x

′)) is GP model. Hyperparameters (αl, τ
2
l ,θl)

are estimated by maximizing the log-likelihood via an optimization algorithm "L-BFGS-B". For
constant=FALSE, αl = 0.

Covariance kernel is defined as: Kl(x,x
′) =

∏d
j=1 ϕ(xj , x

′
j ; θlj) with ϕ(x, x′; θ) = exp

(
− (x−x′)

2

θ

)
for squared exponential kernel; kernel="sqex", ϕ(x, x′; θ) =

(
1 +

√
3|x−x′|

θ

)
exp

(
−

√
3|x−x′|

θ

)
for Matern kernel with the smoothness parameter of 1.5; kernel="matern1.5" and ϕ(x, x′; θ) =(
1 +

√
5|x−x′|

θ + 5(x−x′)2

3θ2

)
exp

(
−

√
5|x−x′|

θ

)
for Matern kernel with the smoothness parameter of

2.5; kernel="matern2.5".

For details, see Heo and Sung (2023+, <arXiv:2309.11772>).
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Value

• fit.RNAmf_two_level: a class RNAmf object fitted by RNAmf_two_level. It contains a list of{
fit1 for (X1, y1),

fit2 for ((X2, f1(X2)), y2),
. See RNAmf_two_level.

• fit3: list of fitted model for ((X2, f2(X3, f1(X3))), y3).

• constant: copy of constant.

• kernel: copy of kernel.

• level: a level of the fidelity. It returns 3.

• time: a scalar of the time for the computation.

See Also

predict.RNAmf for prediction.

RNAmf_two_level Fitting the Recursive non-additive model with two fidelity levels.

Description

The function fits RNA models with designs of two fidelity levels. The estimation method is based on
MLE. Possible kernel choices are squared exponential, Matern kernel with smoothness parameter
1.5 and 2.5. The function returns fitted model at level 1 and 2, whether constant mean or not, and
kernel choice.

Usage

RNAmf_two_level(X1, y1, X2, y2, kernel = "sqex", constant = TRUE, ...)

Arguments

X1 vector or matrix of input locations for the low fidelity level.

y1 vector of response values for the low fidelity level.

X2 vector or matrix of input locations for the high fidelity level.

y2 vector of response values for the high fidelity level.

kernel character specifying kernel type to be used, to be chosen between "sqex"(squared
exponential), "matern1.5", or "matern2.5". Default is "sqex".

constant logical indicating for constant mean of GP (constant=TRUE) or zero mean (constant=FALSE).
Default is TRUE.

... for compatibility with optim.
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Details

Consider the model

{
f1(x) = W1(x),

f2(x) = W2(x, f1(x)),
where fl is the simulation code at fidelity level l,

and Wl(x) ∼ GP (αl, τ
2
l Kl(x,x

′)) is GP model. Hyperparameters (αl, τ
2
l ,θl) are estimated by

maximizing the log-likelihood via an optimization algorithm "L-BFGS-B". For constant=FALSE,
αl = 0.

Covariance kernel is defined as: Kl(x,x
′) =

∏d
j=1 ϕ(xj , x

′
j ; θlj) with ϕ(x, x′; θ) = exp

(
− (x−x′)

2

θ

)
for squared exponential kernel; kernel="sqex", ϕ(x, x′; θ) =

(
1 +

√
3|x−x′|

θ

)
exp

(
−

√
3|x−x′|

θ

)
for Matern kernel with the smoothness parameter of 1.5; kernel="matern1.5" and ϕ(x, x′; θ) =(
1 +

√
5|x−x′|

θ + 5(x−x′)2

3θ2

)
exp

(
−

√
5|x−x′|

θ

)
for Matern kernel with the smoothness parameter of

2.5; kernel="matern2.5".

For details, see Heo and Sung (2023+, <arXiv:2309.11772>).

Value

• fit1: list of fitted model for (X1, y1).

• fit2: list of fitted model for ((X2, f1(X2)), y2).

• constant: copy of constant.

• kernel: copy of kernel.

• level: a level of the fidelity. It returns 2.

• time: a scalar of the time for the computation.

See Also

predict.RNAmf for prediction.
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